Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer.

نویسندگان

  • P Roy
  • O Tretyakov
  • J Wright
  • D J Waxman
چکیده

The anticancer prodrug ifosfamide (IFA) contains a chiral phosphorous atom and is administered clinically as a racemic mixture of R and S enantiomers. Animal model studies and clinical data indicate enantioselective differences in cytochrome P-450 (CYP) metabolism, pharmacokinetics, and therapeutic efficacy between the two enantiomers; however, the metabolism of individual IFA enantiomers has not been fully characterized. The role of CYP enzymes in the stereoselective metabolism of R-IFA and S-IFA was investigated by monitoring the formation of both 4-hydroxy (activated) and N-dechloroethyl (DCl) (inactive, neurotoxic) metabolites. In the 4-hydroxylation reaction, cDNA-expressed CYPs 3A4 and 3A5 preferentially metabolized R-IFA, whereas CYP2B6 was more active toward S-IFA. Enantioselective IFA 4-hydroxylation (R > S) was observed with six of eight human liver samples. In the N-dechloroethylation reaction, CYPs 3A4 and 2B6 both catalyzed a significantly higher intrinsic metabolic clearance (V(max)/K(m)) of S-IFA compared with R-IFA. Striking P-450 form specificity in the formation of individual DCl metabolites was evident. CYPs 3A4 and 3A5 preferentially produced (R)N2-DCl-IFA and (R)N3-DCl-IFA (derived from R-IFA and S-IFA, respectively), whereas CYP2B6 correspondingly formed (S)N3-DCl-IFA and (S)N2-DCl-IFA. In human liver microsomes, the CYP3A-specific inhibitor troleandomycin suppressed (R)N2- and (R)N3-DCl-IFA formation by >/=80%, whereas (S)N2- and (S)N3-DCl-IFA formation were selectively inhibited (>/=85%) by a CYP2B6-specific monoclonal antibody. The overall extent of IFA N-dechloroethylation varied with the CYP3A4 and CYP2B6 content of each liver, but was significantly lower for R-IFA (32 +/- 13%) than for S-IFA (62 +/- 17%, n = 8; p <.001) in all livers examined. R-IFA thus has more favorable liver metabolic properties than S-IFA with respect to less extensive N-dechloroethylation and more rapid 4-hydroxylation, indicating that R-IFA may have a distinct clinical advantage over racemic IFA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of CYP2B6 in stereoselective human methadone metabolism.

BACKGROUND Metabolism and clearance of racemic methadone are stereoselective and highly variable, yet the mechanism remains largely unknown. Initial in vitro studies attributed methadone metabolism to cytochrome P4503A4 (CYP3A4). CYP3A4 was also assumed responsible for methadone clearance in vivo. Nevertheless, recent clinical data do not support a primary role for CYP3A4 and suggest that CYP2B...

متن کامل

Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles.

The contributions of specific human liver cytochrome P-450 (CYP) enzymes to the activation, via 4-hydroxylation, of the oxazaphosphorine anticancer prodrugs cyclophosphamide (CPA) and ifosfamide (IFA) were investigated. Analysis of a panel of 15 human P-450 cDNAs expressed in human lymphoblasts and/or baculovirus-infected insect cells (Supersomes) demonstrated that CYPs 2A6, 2B6, 3A4, 3A5, and ...

متن کامل

Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism.

Eight inhibitory monoclonal antibodies (MAbs) individually specific to human cytochrome P-450 (P-450) 1A1, 1A2, 2A6, 2B6, 2C subfamily (2C8, 2C9, 2C18 and 2C19), 2D6, 2E1, and 3A4/5 were used to define the role of single P-450s in the metabolism of diazepam (DZ), 7-ethoxycoumarin (7-EC), and imipramine (IMI) in human liver microsomes (HLM). The MAbs were added combinatorially to six HLM samples...

متن کامل

Selective mechanism-based inactivation of cytochromes P-450 2B1 and P-450 2B6 by a series of xanthates.

Fifteen xanthates with carbon chains of different lengths or substitutions, including the antiviral compound D609 (O-tricyclo[5.2. 1.0(2,6)]dec-9-yl-dithiocarbonate), were tested for their ability to inactivate cytochromes P-450 (P-450s) 2B1 and 2B6. All of the xanthates tested were found to inactivate P-450 2B1 in a time- and concentration-dependent manner. The rates of inactivation at 30 degr...

متن کامل

Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4.

We investigated the enzyme kinetic basis for the stereoselective disposition of R- and S-omeprazole (OME) and racemic OME in human liver microsomes. OME is primarily metabolized by the hepatic cytochrome P450 enzyme system (CYP2C19 and 3A4). The metabolism of each enantiomer and pseudoracemic OME was studied using unlabeled and (13)C(7)-labeled enantiomers. The enantiomers inhibited each other'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 1999